be a minimum for the correct Φ. The condition for an extremum of $R(\Phi)$ is

$$
\begin{align*}
\partial R / \partial \varphi_{\mathbf{h}}= & -2 \sum_{\mathbf{H}} m(\mathbf{H}) \Delta E(\mathbf{H})\left\{\mathbf{E}_{c}^{*}(\mathbf{H})\left[\partial \mathbf{E}_{c}(\mathbf{H}) / \partial \varphi_{\mathbf{h}}\right]\right. \\
& \left.+\left[\partial \mathbf{E}_{c}^{*}(\mathbf{H}) / \partial \varphi_{\mathbf{h}}\right] \mathbf{E}_{c}(\mathbf{H})\right\}=0 \tag{4}
\end{align*}
$$

for every $\varphi_{\mathbf{h}} \in \Phi$, where $\Delta E(\mathbf{H})$ is $w(\mathbf{H})\left[E(\mathbf{H})^{2}-E_{c}(\mathbf{H})^{2}\right]$ for R_{1} or $w(\mathbf{H})\left[E(\mathbf{H})-E_{c}(\mathbf{H})\right] /\left[2 E_{c}(\mathbf{H})\right]$ for R_{2}. By working (4) out and assuming a non-centrosymmetric space group, one finds that

$$
\begin{align*}
0= & -4 \sum_{\mathbf{H}} m(\mathbf{H}) \theta(\mathbf{H}) \Delta E(\mathbf{H}) \\
& \times \sum_{s}\left(\partial / \partial \varphi_{\mathbf{h}}\right)\left\{\mathbf{E}_{\mathrm{c}}(-\mathbf{H}) \mathbf{E}\left(\mathbf{h} R_{s}\right) \mathbf{E}\left(\mathbf{H}-\mathbf{h} R_{s}\right)\right. \\
& +\mathbf{E}_{\mathbf{c}}(-\mathbf{H}) \mathbf{E}\left(-\mathbf{h} R_{s}\right) \mathbf{E}\left(\mathbf{H}+\mathbf{h} R_{s}\right) \\
& +\mathbf{E}_{\mathbf{c}}(\mathbf{H}) \mathbf{E}\left(\mathbf{h} R_{s}\right) \mathbf{E}\left(-\mathbf{H}-\mathbf{h} R_{s}\right) \\
& \left.+\mathbf{E}_{\mathrm{c}}(\mathbf{H}) \mathbf{E}\left(-\mathbf{h} R_{s}\right) \mathbf{E}\left(-\mathbf{H}+\mathbf{h} R_{s}\right)\right\} \tag{5}\\
= & -4 \sum_{\mathbf{H}} m(\mathbf{H}) \theta(\mathbf{H}) \Delta E(\mathbf{H}) \\
& \times \sum_{s}\left(\partial / \partial \varphi_{\mathbf{h}}\right)\left\{\mathbf{E}_{c}\left(-\mathbf{H} R_{s}^{-1}\right) \mathbf{E}(\mathbf{h}) \mathbf{E}\left(\mathbf{H} R_{s}^{-1}-\mathbf{h}\right)\right. \\
& +\mathbf{E}_{\mathrm{c}}\left(-\mathbf{H} R_{s}^{-1}\right) \mathbf{E}(-\mathbf{h}) \mathbf{E}\left(\mathbf{H} R_{s}^{-1}+\mathbf{h}\right) \\
& +\mathbf{E}_{\mathrm{c}}\left(\mathbf{H} R_{s}^{-1}\right) \mathbf{E}(\mathbf{h}) \mathbf{E}\left(-\mathbf{H} R_{s}^{-1}-\mathbf{h}\right) \\
& \left.+\mathbf{E}_{\mathrm{c}}\left(\mathbf{H} R_{s}^{-1}\right) \mathbf{E}(-\mathbf{h}) \mathbf{E}\left(-\mathbf{H} R_{s}^{-1}+\mathbf{h}\right)\right\} \tag{6}\\
= & -8 \sum_{\mathbf{H}^{\prime}} \theta\left(\mathbf{H}^{\prime}\right) \Delta E\left(\mathbf{H}^{\prime}\right)\left(\partial / \partial \varphi_{\mathbf{h}}\right)\left\{\left|E(-\mathbf{h}) E_{\mathrm{c}}\left(\mathbf{H}^{\prime}\right) E\left(\mathbf{h}-\mathbf{H}^{\prime}\right)\right|\right. \\
& \left.\times \cos \left(\varphi_{-\mathbf{h}}+\varphi_{\mathbf{H}^{\prime}}+\varphi_{\mathbf{h}-\mathbf{H}^{\prime}}\right)\right\} \tag{7}\\
= & -8 E(\mathbf{h}) \sum_{\mathbf{H}^{\prime}} \theta\left(\mathbf{H}^{\prime}\right) \Delta E\left(\mathbf{H}^{\prime}\right)\left|E_{c}\left(\mathbf{H}^{\prime}\right) E\left(\mathbf{h}-\mathbf{H}^{\prime}\right)\right| \\
& \times\left\{-\sin \varphi_{\mathbf{h}} \cos \left(\varphi_{\mathbf{H}^{\prime}}+\varphi_{\mathbf{h}-\mathbf{H}^{\prime}}\right)\right. \\
& \left.+\cos \varphi_{\mathbf{h}} \sin \left(\varphi_{\mathbf{H}^{\prime}}+\varphi_{\mathbf{h}-\mathbf{H}^{\prime}}\right)\right\} \tag{8}
\end{align*}
$$

where R_{s} is the matrix of the sth point-group symmetry operation and the summation over \mathbf{H}^{\prime} also includes the reflections related by Laue symmetry. By isolating $\varphi_{\mathbf{h}}$ in
(8), the following tangent formula results:

$$
\begin{equation*}
\varphi_{\mathbf{h}}=\text { phase of }\left\{\sum_{\mathbf{H}^{\prime}} \theta\left(\mathbf{H}^{\prime}\right) \Delta E\left(\mathbf{H}^{\prime}\right) \mathbf{E}_{\mathrm{c}}\left(\mathbf{H}^{\prime}\right) \mathbf{E}\left(\mathbf{h}-\mathbf{H}^{\prime}\right)\right\} . \tag{9}
\end{equation*}
$$

The correctness of (9) was tested on the same onedimensional model structure described by Sayre (1952) and Rius \& Miravitlles (1991) by using F values instead of E 's in R_{1}. The test calculations with these data showed that (9) was indeed able to refine phases, provided that it was only applied for $\left|\partial R / \partial \varphi_{\mathrm{h}}\right|$ values greater than a threshold limit value (TLV), i.e. for $\left|\partial R / \partial \varphi_{\mathrm{h}}\right|<\operatorname{TLV}$, the old value of φ_{h} was assumed to be its new estimate. The best TLV was empirically determined. If it was chosen too small, the phase-refinement process became unstable. On the contrary, if it was too large, the refinement did not converge.

Finally, combination of (9) with the conventional tangent formula of Karle \& Hauptman (1956) leads to the improved tangent formula

$$
\begin{align*}
\varphi_{\mathbf{h}}= & \text { phase of }\left\{\sum_{\mathbf{h}^{\prime}} \mathbf{E}\left(\mathbf{h}^{\prime}\right) \mathbf{E}\left(\mathbf{h}-\mathbf{h}^{\prime}\right)\right. \\
& \left.+c \sum_{\mathbf{H}^{\prime}} \theta\left(\mathbf{H}^{\prime}\right) \Delta E\left(\mathbf{H}^{\prime}\right) \mathbf{E}_{c}\left(\mathbf{H}^{\prime}\right) \mathbf{E}\left(\mathbf{h}-\mathbf{H}^{\prime}\right)\right\} \tag{10}
\end{align*}
$$

where the \mathbf{h}^{\prime} summation only involves the strongest E 's, and the \mathbf{H}^{\prime} summation extends over all reflections. The practical application of (10) requires, however, the prior estimation of the scaling factors $\theta\left(\mathbf{H}^{\prime}\right)$, the weighting factors $w\left(\mathbf{H}^{\prime}\right)$ and the value of c at the different stages of the phase-refinement process. Practical results will be published elsewhere.

The financial support of the CSIC and of the DGICYT (Project PB89-0036) is gratefully acknowledged.

References

Karle, J. \& Hauptman, H. (1956). Acta Cryst. 9, 635-651. Rius, J. \& Miravitlles, C. (1991). Acta Cryst. A47, 567-571. Sayre, D. (1952). Acta Cryst. 5, 60-65.

Acta Cryst. (1992). A48, 70-71

High-accuracy $\boldsymbol{a b}$ initio form factors for the hydride anion and isoelectronic species. By AJIT J. THAKKAR, Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B6E2, Canada, and Vedene H. Smith Jr, Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
(Received 23 January 1991; accepted 14 May 1991)

Abstract

Form factors computed from extremely accurate wave functions are tabulated for $\mathrm{H}^{-}, \mathrm{He}, \mathrm{Li}^{+}$and Be^{2+} together with fits to Gaussian expansions of the standard form.

Nearly exact $a b$ initio form factors are available (Thakkar \& Smith, 1978) for the hydride ion and other two-electron atoms. These were computed from extremely accurate wave functions (Thakkar \& Smith, 1977) which allow for electron correlation by inclusion of many terms with an explicit

dependence on the interelectronic distance. Although the form factors listed in the crystallographic tables (Cromer \& Waber, 1974) were computed from Hartree-Fock wave functions which neglect electron correlation completely, they have continued to be used in crystallographic studies. Perhaps this is because the electron-correlated form factors (Thakkar \& Smith, 1978) were given in the form of Chebyshev expansions and not in tabular form.

Therefore, we present in Table 1 a listing of these highly accurate form factors for $\mathrm{H}^{-}, \mathrm{He}, \mathrm{Li}^{+}$and Be^{2+} in the same format as in the crystallographic tables. The correlated form

Table 1. Nearly exact form factors for $\mathrm{H}^{-}, \mathrm{He}, \mathrm{Li}^{+}$and Be^{2+}
The $\lambda^{-1}(\sin \theta)$ values are in \AA^{-1}.

Element	H^{-}	He	Li^{+}	Be^{2+}
Z	1	2	3	4
$(\sin \theta) / \lambda$	f	f	f	f
$0 \cdot 00$	2.0000	$2 \cdot 0000$	2.0000	$2 \cdot 0000$
0.01	1.9826	1.9982	1.9993	1.9997
0.02	1.9329	1.9930	1.9974	1.9986
0.03	1.8571	1.9843	1.9941	1.9969
0.04	1.7630	1.9722	1.9895	1.9945
0.05	1.6585	1.9568	1.9837	1.9915
0.06	1.5500	1.9383	1.9765	1.9877
0.07	1.4420	1.9168	1.9682	1.9833
0.08	1.3375	1.8925	1.9586	1.9783
0.09	1.2382	1.8655	1.9478	1.9726
$0 \cdot 10$	$1 \cdot 1451$	1.8362	1.9359	1.9662
$0 \cdot 11$	$1 \cdot 0584$	1.8046	1.9229	1.9593
$0 \cdot 12$	0.9780	1.7711	1.9087	1.9517
$0 \cdot 13$	0.9038	1.7358	1.8936	1.9435
$0 \cdot 14$	0.8355	1.6990	1.8774	1.9347
$0 \cdot 15$	0.7725	1.6608	1.8603	1.9253
$0 \cdot 16$	0.7146	1.6216	1.8422	1.9153
$0 \cdot 17$	0.6612	1.5816	1.8234	1.9048
$0 \cdot 18$	0.6122	$1 \cdot 5408$	1.8037	1.8938
$0 \cdot 19$	0.5671	1.4996	1.7832	1.8822
$0 \cdot 20$	0.5255	1.4581	1.7620	1.8702
$0 \cdot 22$	0.4520	$1 \cdot 3750$	1.7178	1.8446
$0 \cdot 24$	0.3896	$1 \cdot 2926$	1.6713	1.8172
$0 \cdot 25$	0.3620	$1 \cdot 2519$	1.6474	1.8028
0.26	0.3365	$1 \cdot 2118$	1.6231	1.7881
0.28	0.2913	1-1336	1.5734	1.7575
$0 \cdot 30$	0.2528	1.0584	1.5226	1.7256
0.32	$0 \cdot 2198$	0.9866	1.4712	1.6924
0.34	$0 \cdot 1916$	0.9186	1.4194	$1 \cdot 6582$
$0 \cdot 35$	$0 \cdot 1791$	0.8860	1.3935	1.6407
0.36	$0 \cdot 1675$	0.8545	1.3676	1.6231
0.38	$0 \cdot 1467$	0.7942	1.3161	1.5872
0.40	0.1288	0.7378	1-2649	1.5507
0.42	$0 \cdot 1134$	$0 \cdot 6852$	$1 \cdot 2145$	1.5137
0.44	$0 \cdot 1001$	$0 \cdot 6362$	1-1650	1.4764
0.45	0.0941	0.6131	$1 \cdot 1406$	1.4576
0.46	0.0886	$0 \cdot 5907$	1-1165	1.4388
$0 \cdot 48$	0.0785	0.5486	$1 \cdot 0691$	$1 \cdot 4012$
0.50	0.0698	0.5095	1.0231	$1 \cdot 3636$
0.55	$0 \cdot 0526$	0.4241	0.9140	1.2702
$0 \cdot 60$	0.0401	0.3541	0.8143	$1 \cdot 1789$
0.65	0.0311	0.2966	0.7240	$1 \cdot 0907$
0.70	0.0243	0.2494	0.6429	1.0066
$0 \cdot 80$	0.0155	$0 \cdot 1785$	$0 \cdot 5066$	0.8521
0.90	0.0102	$0 \cdot 1300$	$0 \cdot 3998$	0.7174
1.00	0.0070	0.0962	$0 \cdot 3169$	0.6024
$1 \cdot 10$	0.0049	0.0723	$0 \cdot 2526$	0.5054
1.20	0.0036	0.0552	$0 \cdot 2026$	0.4243
1.30	0.0026	0.0426	0. 1637	0.3568
1.40	$0 \cdot 0020$	0.0334	$0 \cdot 1332$	0.3009
1.50	0.0015	0.0265	$0 \cdot 1091$	0.2545
1.60	0.0012	0.0212	0.0900	0.2160
1.70	0.0009	0.0172	0.0747	0.1840
1.80	0.0008	0.0140	0.0624	$0 \cdot 1573$
1.90	$0 \cdot 0006$	0.0116	0.0525	$0 \cdot 1350$
$2 \cdot 00$	0.0005	0.0096	0.0444	$0 \cdot 1163$
$2 \cdot 50$	0.0002	0.0042	0.0208	0.0584
3.00	$0 \cdot 0001$	$0 \cdot 0021$	0.0108	0.0318
$3 \cdot 50$	$0 \cdot 0001$	0.0012	0.0061	0.0186
4.00	0.0000	0.0007	0.0037	0.0115
$5 \cdot 00$	0.0000	0.0003	0.0016	0.0050
$6 \cdot 00$	$0 \cdot 0000$	$0 \cdot 0001$	$0 \cdot 0008$	0.0025

factor for H^{-}deviates from its Hartree-Fock counterpart (Cromer \& Waber, 1974) by as much as 0.059 at $\lambda^{-1}(\sin \theta)=$ $0.07 \AA^{-1}$ and the mean deviation between the two is 0.016 . Electron correlation affects the form factors of $\mathrm{He}, \mathrm{Li}^{+}$and Be^{2+} to a much lesser degree; the mean differences between

Table 2. Parameters for the fits of the nearly exact form factors of Table 1 to Gaussian expansions as in equation (1) with $c=0$

Note that these parameters have been rounded to the least number of significant figures consistent with the stated accuracy of the fits.

	H^{-}	He					Li^{+}	Be^{2+}
	0.792	0.9778	1.0025	1.0108				
a_{1}	67.5	7.91	2.97	1.55				
b_{1}	0.677	0.5517	0.53269	0.52818				
a_{2}	17.3	2.50	0.968	0.511				
b_{2}	0.377	0.3816	0.38736	0.38880				
a_{3}	271	21.8	7.84	4.02				
b_{3}	0.152	0.08853	0.077219	0.072042				
a_{4}	3.65	0.563	0.213	0.112				
b_{4}								

Table 3. Error measures for the fits using the rounded parameters of Table 2

	Maximum error	$(\sin \theta) / \lambda\left(\AA^{-1}\right)$	Mean error
H^{-}	0.0031	1.1	0.0011
He	0.0016	2.5	0.0004
Li^{+}	0.0012	5.0	0.0003
Be^{2+}	0.0012	6.0	0.0002

the correlated and Hartree-Fock form factors are 0.001 , $0 \cdot 0005$ and $0 \cdot 0004$, respectively, for $\mathrm{He}, \mathrm{Li}^{+}$and Be^{2+}. It should be noted that the Hartree-Fock wave function does not yield a bound hydride anion while an electron-correlated wave function does.

As a convenience to potential users of our form factors, we have fitted them to Gaussian expansions of precisely the type used in the standard tables (Cromer \& Waber, 1974) and in many crystallographic computer programs. This form is given by

$$
\begin{equation*}
f(x)=a_{1} \exp \left(-b_{1} x^{2}\right)+\ldots+a_{4} \exp \left(-b_{4} x^{2}\right)+c \tag{1}
\end{equation*}
$$

in which $x=\lambda^{-1}(\sin \theta)$. The parameter c has been set to zero since a constant term in the form factor corresponds to an unphysical Dirac delta function in the charge density. Table 2 lists the relevant parameters; these have been rounded to the least number of significant figures possible without sacrifice of the accuracy of the fits. The quality of the fits can be assessed with the help of Table 3 which lists the mean error, the maximum error and the value of $\lambda^{-1}(\sin \theta)$ at which it occurs. These measures, which were computed using the set of rounded parameter, show that our fits are of the same quality as those listed in the standard tables (Cromer \& Waber, 1974) for Hartree-Fock form factors of these same systems.

Support of this research by the Natural Sciences and Engineering Research Council of Canada (NSERCC) is gratefully acknowledged.

References

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 71-147. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Thakkar, A. J. \& Smith, V. H. Jr (1977). Phys. Rev. A, 15, 1-15. Thakkar, A. J. \& Smith, V. H. Jr (1978). J. Phys. B, 11, 3803-3820.

